
The Performance Evaluation
Research Center (PERC)

Participating Institutions:

Argonne Natl. Lab. Univ. of California, San Diego
Lawrence Berkeley Natl. Lab. Univ. of Illinois
Lawrence Livermore Natl. Lab. Univ. of Maryland
Oak Ridge Natl. Lab. Univ. of Tennessee, Knoxville

Website: http://perc.nersc.gov

PERC Overview

An “Integrated Software Infrastructure Center” (ISIC)
sponsored under DoE’s SciDAC program.

Funding: approx. $2.4 million per year.

Mission:
Develop a science of performance.

Engineer tools for performance analysis and optimization.

Focus:
Large, grand-challenge calculations, especially large-scale

scientific codes used in SciDAC projects.

Specific Objectives

Understand key factors in scientific codes that affect
performance.

Understand key factors in computer systems that affect
performance.

Develop models that accurately predict performance of
codes on systems.

Develop an enabling infrastructure of tools for
performance monitoring, modeling and optimization.

Validate these ideas and infrastructure via close
collaboration with DOE Office of Science and others.

Transfer the technology to end users.

Economic Benefits

Consider the economic value of improving the performance
of a single high-end scientific application code by 20%.

Assume:

$10 million computer system lease cost per year.

$10 million per year in site costs, support staff, etc.

10-year lifetime of code.

Code uses 5% of system cycles each year.

Savings: $2,000,000.

Scientific benefit (additional computer runs and research) is
probably much higher.

Quantitative Feedback
to Vendors

We are invited by vendors to provide guidance on the
design of current and future systems.

BUT

At present we can provide only vague information – little if
any quantitative data or rigorous analysis.

The performance monitoring and modeling capability being
developed in PERC will significantly improve our ability to
influence future scientific computer systems.

Four Thrusts

Better Benchmarks:
Kernel benchmarks extracted from real codes reduce
complexity of analyzing full-size benchmarks.
Low-level benchmarks measure key rates of data access at
various levels of memory hierarchy.

Modern performance monitoring tools:
Flexible instrumentation systems capture hardware and
software interactions, instruction execution frequencies,
memory reference behavior, and execution overheads.
An advanced data management infrastructure tracks
performance experiments and data across time and space.

Four Thrusts, cont.

Performance modeling:
Application signature tools characterize applications
independent of the machine where they execute.

Machine signature tools characterize computer systems,
independent of the applications.

Convolution tools combine application and machine
signatures to provide accurate performance models.

Statistical models find approximate performance models
based on easily measured performance data.

Performance bound tools determine ultimate potential of an
application on a given system.

Four Thrusts, cont.

Performance optimization:
Compile-time optimization mechanisms analyze source
code to improve performance.

Self-tuning software automatically tunes code based on
real-time measurements of hardware environment.

Performance assertions permit user-specified run-time tests
to possibly change the course of the computation
depending on results.

Performance portability programming techniques to insure
that code runs at near-optimal performance across a variety
of modern systems.

Partnerships with SciDAC
Scientific Projects

Terascale Simulation of Neutrino-Driven Supernovae
Advanced Computing for 21st Century Accelerators
National Computational Infrastructure for Lattice
Gauge Theory
Collaborative Design and Development of Community
Climate System Model for Terascale Computers
Numerical Computation of Wave-Plasma Interactions
The Plasma Microturbulence Project
Terascale Optimal PDE Solvers

Memory Access Patterns
(MAPS)

Performance Model Vs
Actual

0.7952.4652.88128

3.5247.1548.8796

2.2343.9144.9164

6.6733.7236.138

7.5731.2729.074

0.1331.8231.782

% ErrorPredicted TimeReal Time# CPUs

PETSc kernel, run on IBM SP at SDSC.

SvPablo Graphical
Interface

PAPI Perfometer Interface

AORSA3D was ported and benchmarked on IBM and Compaq platforms. A
detailed performance analysis has begun using SvPablo and PAPI. The results
below are for a 400 Fourier mode run on 16 processors and 1 node of an IBM SP
(Nighthawk II / 375MHz).

Performance Analysis
AORSA3D (fusion)

Time Profile of Total Execution

load matrix
23%

LU factorization
(ScaLAPACK)

63%

other
14%

load matrix
LU factorization (ScaLAPACK)
other

Time Profile of LU Factorization

pzgetrf2
6%

pzlaswp
6%

pztrsm
0%

pzgemm
87%

other
1%

pzgetrf2
pzlaswp
pztrsm
pzgemm
other

Efficiency of LU Factorization Subroutines

1.1

0.63

2.1

2.8

0 0.5 1 1.5 2 2.5 3

pzgetrf2

pzlaswp

pztrsm

pzgemm

S
ca

LA
P

A
C

K
 s

ub
ro

ut
in

es

Instructions Completed / Cycles

Instruction Efficiency

MFLOP Rates for LU Factorization Subroutines

33

0.1

461

648

0 200 400 600 800

pzgetrf2

pzlaswp

pztrsm

pzgemm
S

ca
LA

P
A

C
K

 s
ub

ro
ut

in
es

MFLOP/s

MFLOP/s

Time Profile of PZGEMM

ZGEMM (Fgemm)
97%

other
3%

ZGEMM (Fgemm)
other

Performance for ZGemm
Denisty of Mem Access 1
Denisty of FLOPs 1.8
MFLOP/s 664
L1 cache hit rate 0.98
L2 cache hit rate 0.96
TLB misses 285034

Aggregate performance measures
over all tasks for a .1 simulation-
second run. Collected with PAPI on
an IBM SP (Nighthawk II / 375MHz).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

forces: sweepy sphere

forces: sweepx sphere

parabola: if false

parabola: monotonicity

riemann: newton

reimann: 1st Pmid guess

remap: advect mme

remap: calculate mme

remap: subshells

Instructions / Cycles

Density of Memory Access
Density of FLOPs
Instruction Efficiency

0

100

200

300

400

500

reimann remap

MFLOP/s

M Instructions/s

RIEMANN
Floating Point

MULT-ADD
4%

DIV
21%

SQRT
6%

Other
69%

evolve
6%

forces
9%

MPI_ALLTOALL
10%

other
12%

parabola
24%

ppm
5%

volume
4%

states
4%remap

17%riemann
9%

REMAP
Floating Point

MULT-ADD
22%

DIV
2%

SQRT
0%

Other
76%

Performance Analysis
EVH1 (high-energy physics)

Analysis and Tuning
EVH1 (high-energy physics)

It was found that for more than 64 processors, EVH1 is communication-bound.
The predominant routine (>50% of execution time) at this scale is
MPI_ALLTOALL, which is used in matrix-transpose-like operations.

The current implementation uses a 1D decomposition for the matrix-array;
a modeling and analysis study has shown that a 2D decomposition would
result in a large improvement. Benchmarking and analysis results are below.

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32 64 128
Number of Processors

C
om

m
un

ic
at

io
n

Ti
m

e
(s

ec
s)

1-D Theoretical
2-D Theoretical
1-D Measured (Code)
1-D Measured (Kernel)
2-D Measured (Kernel)

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32 64 128

Number of Processors

S
im

ul
at

io
n

S
ec

on
ds

 P
er

 D
ay

IBM p690 (1.3GHz)
IBM SP (Winterhawk II / 375MHz)
Compaq Alphaserver SC (ES40 / 667MHz)
Compaq Alphaserver SC (ES45 / 1.0GHz)
IBM SP (Nighthawk II / 375MHz)

In studies with PCTM, we examined the impact of different domain
decompositions, as well as using fewer MPI processes per SMP node. These studies
indicated a strong performance dependence on message-passing performance, where
using 64 MPI processes on 32 4-way
SMP nodes (leaving 64 processors idle)
was 30% faster than when running on
16 SMP nodes.

PCTM Simulation Years per Day

0

2

4

6

8

10

2 4 8 16 32 64

Number of Processors

Fo
re

ca
st

 Y
ea

rs
 p

er
 D

ay

IBM p690 (1.3 GHz)
IBM SP (Winterhawk II / 375MHz)
Compaq Alphaserver SC (ES40 / 667MHz)
Compaq Alphaserver SC (ES45 / 1.0GHz)

Performance Analysis
PCTM (climate modeling)

Analysis and Tuning
CAM (atmospheric modeling)

CAM performance measurements on IBM
p690 cluster (and other platforms) were used
to direct development process. Graph shows
performance improvement from performance
tuning and recent code modifications.

Profile of current version of CAM indicates that
improving the serial performance of the physics
is the most important optimization for small
numbers of processors, and introducing a 2D
decomposition of the dynamics (to improve
scalability) is the most important optimization for
large numbers of processors.

Working with PERC

Benchmarking
Application group works with PERC to specify relevant
benchmark codes and problems.

PERC characterizes performance, generates performance
models, and suggests optimizations.

Performance Tools
PERC trains application developers to use tools.

Application group uses tools in development, providing
feedback on functionality and future development

For further information: http://perc.nersc.gov

	The Performance Evaluation Research Center (PERC)
	PERC Overview
	Specific Objectives
	Economic Benefits
	Quantitative Feedbackto Vendors
	Four Thrusts
	Four Thrusts, cont.
	Four Thrusts, cont.
	Partnerships with SciDAC Scientific Projects
	Memory Access Patterns (MAPS)
	Performance Model Vs Actual
	SvPablo Graphical Interface
	Working with PERC

